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The paper deals with the propagation of shear horizontal (SH) waves in an nonhomogeneous
elastic half-space composed of a layer whose shear modulus and mass density have a power
dependence on the distance from the lower plane and the periodically stratified half-space.
The equation which relates the wave speed to the wave-number and functions of the shear
modulus and mass density is derived. The wave velocity is analyzed numerically. Especially,
the influence of mechanical properties of the coating layer and the stratified foundation on
the wave velocity is presented in the form of figures.
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1. Introduction

The phenomena of wave propagations through the Earth is useful in investigating the internal
Earth structure, and it can be helpful in explorations of various materials beneath the Earth’s
surface. It is well known that the Earth is not perfectly homogeneous and some forms of inho-
mogeneity exist. Many rocks and soils are stratified and clearly pice-wise homogeneous. Some
layers are characterized by mechanical parameters with continuous changing in spatial direc-
tions (called as functionally graded materials). The problems of modeling of wave propagations
in inhomogeneous elastic bodies play a very important role in applied geophysics civil and me-
chanical engineering (space structures, fusion reactors). The list of references connected with
the problems of wave propagations in inhomogeneous elastic bodies is rather very large (for
instance monographsby by Birykov et al. (1995), Brekhovskikh (1960), Kennet (1983), Nayfeh
(1995); papers by Achenbach and Balogun (2010), Alenitsyn (1964), Alshits and Maugin (2005),
Cerveny et al. (1982), Destrade (2007), Shuvalov et al. (2008), Vrettos (1990)). Achenbach and
Balogun (2010) dealt with the propagation of anti-plane shear waves in an elastic half-space
whose shear modulus and mass density had an arbitrary dependence on the distance from the
boundary plane. Alenitsyn (1964) considered the problem of Rayleigh waves in a nonhomogeno-
us elastic slab. Alshits and Maugin (2005) developed a theory for the elastic wave propagation
in an arbitrary layered plane (piece-wise homogenous or continuously inhomogeneous). The de-
scription was based on the transfer matrix approach. The Gaussian beam method of the solution
of wave propagation problems in inhomogeneous bodies was applied by Cerveny et al. (1982).
The seismic Rayleigh waves in an orthotropic elastic half-space with an exponentially graded
properties were considered by Destrade (2007). Shuvalov et al. (2008) presented some analysis of
the problem of shear horizontal waves in transversely inhomogeneous plates. Surface harmonic
vibrations of soil deposits with variable shear modulus were analysed by Vrettos (1990).
The problem of SH-wave propagation in anisotropic inhomogeneous layer with directional

rigidities and density of mass changing as a power function was investigated by Upadhyay and



1126 S. Kowalczyk et al.

Gupta (1972). The authors assumed that the outer layer was fixed to an isotropic homogeneous
elastic half-space or to the rigid substrate.

The present paper is concerned with the case of a shear horizontal (SH) wave in an inho-
mogeneous elastic layer which is assumed to be ideally fixed to a periodically stratified elastic
half-space, and the upper boundary plane is free of loadings. The considered layer is charac-
terized by the shear modulus and mass density in the form of power functions of the distance
from the lower boundary plane. The substrate is assumed to be composed of periodically re-
peated two-layered laminae parallel to the boundary plane. Each component of the lamina is
a homogeneous and isotropic body. The assumptions connected with the ideal bonding of the
components on interfaces lead to a complicated boundary value problem within the framework
of the classical theory of elasticity. For this reason, the classic idea is the use of the approximate
procedure to replace the heterogeneous medium by an equivalent homogenized model, which
gives the average behavior at the macroscopic scale. One of them is the homogenized model
with microlocal parameters presented by Matysiak and Woźniak (1987, 1988). This model is
derived by using the methods of the nonstandard analysis and taking into account the effects
due to the periodic structure of the body. The governing equations of the model are formula-
ted in terms of the unknown macro-displacements and certain extra unknowns being referred
to as microlocal parameters. They are described by a relatively simple form of the equations
satisfying the conditions of perfect interfacial bonding of constituents. The homogenized model
has been successfully applied to a series of problems of the linear elasticity and thermoelasticity
(problems of cracks, cavities, inclusions, contact problems, wave propagations), which it was
partially resumed in (Matysiak, 1996; Woźniak and Woźniak, 1995). It should be underlined
that the homogenization approach has been noticed to produce good physical results, at the
same time being rather simple in mathematical aspects (Kulchytsky-Zhyhailo and Kołodziej-
czyk, 2007; Kulchytsky-Zhyhailo and Matysiak, 2005, 2006; Kulchytsky-Zhyhailo et al., 2006).
The wave problems in a periodically layered elastic half-space were investigated by Bielski and
Matysiak (1992), Matysiak et al. (2009). The same dependence of the shear modulus is taken
into account in many papers (see for instance Calladine and Greenwood, 1978; Wang et al.,
2003)). The same dependence of the shear modulus of the coating layer is considered in the pre-
sent paper. The distributions of displacements and stresses in an inhomogeneous incompressible
elastic half-space caused by line and point loads are considered in (Cerveny et al., 1982). The
propagation of surface waves in a linear-elastic, isotropic, compressible half-space with constant
mass density and Poisson’s ratio and shear modulus varying with depth is considered in (Vret-
tos, 1990). The useful list of dependence forms for elastic modulus is presented by Wang et al.
(2003).

2. Formulation and solution of the problem

Consider the problem of shear waves propagation in an elastic nonhomogeneous layer and pe-
riodically layered half-space. Let (x1, x2, x3) denote the Cartesian coordinate system such that
the layer occupies the region x1 ∈ R, 0 ¬ x2 ¬ H, x3 ∈ R, where H > 0 is constant thickness of
the FGM body, Fig. 1.

Let the upper boundary plane x2 = H be free of loadings, and the layer is ideally fixed to the
periodically two-layered half-space in the plane x2 = 0. Let the stratified half-space be composed
of periodically repeated fundamental laminae with thickness δ, which include two homogeneous
isotropic sub-layers denoted by 1 and 2 with thicknesses δj , j = 1, 2, and δ = δ1+ δ2. Let µj, ρj,
j = 1, 2 be the shear modulus and mass densities of the subsequent constituents of the composite
half-space. Herein and in the sequel, all quantities (material components, stresses) pertaining
to sub-layer 1 and 2 will be labeled by the index j taking values 1 and 2, respectively. The
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Fig. 1. Scheme of the considered SH problem

considerations are limited to the anti-plane harmonic wave propagation in the 0x1 direction. Let
u(x1, x2, t) = (0, 0, u3(x1, x2, t)) be the displacement vector, where t denotes time. The shear
modulus µ and mass density ρ of the upper layer are assumed the same as in (Upadhyay and
Gupta, 1972), namely

µ = µ0(1 + αx2)
p ρ = ρ0(1 + αx2)

p (2.1)

where µ0, ρ0, α, p are given constants.
The non-zero stress components σ13 and σ23 in the coating layer are expressed in the form

σ13(x1, x2, t) = µ0(1 + αx2)
p∂u3(x1, x2, t)

∂x1

σ23(x1, x2, t) = µ0(1 + αx2)
p∂u3(x1, x2, t)

∂x2

(2.2)

The anti-plane wave motion is governed by the following equation

∂σ13
∂x1
+
∂σ23
∂x2
= ρ0(1 + αx2)

p∂
2u3
∂t2

x1 ∈ R 0 < x2 < H (2.3)

where the body forces are omitted. From equations (2.2) and (2.3), it follows that

∂2u3
∂x21
+

αp

1 + αx2

∂u3
∂x2
+
∂2u3
∂x22
=
ρ0
µ0

∂2u3
∂t2

x1 ∈ R 0 < x2 < H t ∈ R (2.4)

To determine the displacement and stresses in the periodically layered half-space x2 < 0, the ho-
mogenized model with microlocal parameters (Bielski and Matysiak, 1992; Kulchytsky-Zhyhailo
and Kołodziejczyk, 2007; Kulchytsky-Zhyhailo and Matysiak, 2005, 2006; Kulchytsky-Zhyhailo
et al., 2006; Matysiak et al., 2009; Matysiak and Woźniak, 1987, 1988) is applied. Here only a
brief outline of the governing equations for the case of anti-plane state of strain will be presen-
ted. The homogenized procedure presented by Matysiak and Woźniak (1987, 1988) is based on
theorems of the nonstandard analysis and some physical assumptions, which leads, in the case
of anti-plane state of strain, to the following approximations

u3(x1, x2, t) = w3(x1, x2, t) + h(x2)q3(x1, x2, t) ≈ w3(x1, x2, t)
∂u3(x1, x2, t)

∂x1
≈ ∂w3(x1, x2, t)

∂x1

∂u3(x1, x2, t)

∂t
≈ ∂w3(x1, x2, t)

∂t

∂u3(x1, x2, t)

∂x2
≈ ∂w3(x1, x2, t)

∂x2
+ h′(x2)q3(x1, x2, t)

(2.5)

where w3, q3 are unknowns called macro-displacement and microlocal parameters, respectively.
The function h (called the shape function) is given in the form

h(x2) =






x2 −
1

2
δ1 for 0 ¬ x2 ¬ δ1

− ηx2
1− η −

1

2
δ1 +

δ1
1− η for δ1 ¬ x2 ¬ δ

h(x2 + δ) = h(x2)

(2.6)
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and

η =
δ1
δ

(2.7)

Since |h(x2)| < δ for every x2 ∈ R, then for small δ the terms with h in equations (2.5) are small
and are neglected. However, the derivative h′ is not small and the terms involving h′ cannot be
neglected. The form of the shape function h given in (2.6) secures the fulfilment of the conditions
of ideal bonding on the composite interfaces. The homogenized model presented by Matysiak
and Woźniak (1987, 1988) in the case of anti-plane state of strain leads to the following equations
for the unknowns w3 and q3

µ̃
(∂2w3
∂x21
+
∂2w3
∂x22

)
+ [µ]

∂q3
∂x2
= ρ̃

∂2w3
∂t2

µ̂q3 + [µ]
∂w3
∂x2
= 0 (2.8)

where

ρ̃ = ηρ1 + (1− η)ρ2 µ̃ = ηµ1 + (1− η)µ2

[µ] = η(µ1 − µ2) µ̂ = ηµ1 +
η2µ2
1− η

(2.9)

The non-zero stress components σ
(j)
13 , σ

(j)
23 , j = 1, 2 in the layer of j-th kind are expressed in the

form

σ
(j)
13 = µj

∂w3
∂x1

σ
(j)
23 = µj

(∂w3
∂x2
+ h′(x2)q3

)
(2.10)

Eliminating the microlocal parameter q3 from (2.8)1 (2.10) by using (2.8)2, leads to the equations

µ̃
∂2w3
∂x21
+C

∂2w3
∂x22

= ρ̃
∂2w3
∂t2

(2.11)

and

σ
(j)
13 = µj

∂w3
∂x1

σ
(j)
23 = C

∂w3
∂x2

j = 1, 2 (2.12)

where

C = µ̃− [µ]
2

µ̂
=

µ1µ2
(1− η)µ1 + ηµ2

> 0 (2.13)

The following boundary conditions are taken into consideration:

a) on the upper boundary of the FGM layer

σ23(x1,H, t) = 0 x1 ∈ R t ∈ R (2.14)

b) on the interface x2 = 0 between the FGM layer and the periodically stratified half-space

u3(x1, 0
+, t) = w3(x1, 0

−, t) σ23(x1, 0
+, t) = σ

(1)
23 (x1, 0

−, t)

x1 ∈ R t ∈ R
(2.15)

c) the regularity condition at infinity

lim
x2→−∞

w3(x1, x2, t) = 0 (2.16)
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Let us consider a SH wave solution of the form

u3(x1, x2, t) = U3(x2)e
ik(x1−ct) w3(x1, x2, t) =W3(x2)e

ik(x1−ct) (2.17)

where i =
√
−1, U3 and W3 are unknown amplitude of displacement in the outer layer and the

periodically layered half-space, respectively, and k and c are the wave number and the phase
velocity, respectively. By using equations (2.4) and (2.11) and (2.17), an ordinary differential
equation are obtained

d2U3(x2)

dx22
+

αp

1 + αx2

dU3(x2)

dx2
+ k2
(c2

c20
− 1
)
U3(x2) = 0 0 < x2 < H (2.18)

and

d2W3(x2)

dx22
+
k2

C
(ρ̃c2 − µ̃)W3(x2) = 0 x2 < 0 (2.19)

where

c20 =
µ0
ρ0

(2.20)

The ordinary differential equation of the second order with variable coefficients (2.18) belongs
to well-known type (Kamke, 1976, p. 401). Its general solution has the form

U3(x2) = (1 + αx2)
1−p
2

[
A1J |1−p|

2

(
q
( 1
α
+ x2
))
+A2Y |1−p|

2

(
q
( 1
α
+ x2
))]

0 < x2 < H

(2.21)

where

q2 = k2
(c2

c20
− 1
)

(2.22)

on the assumption that c > c0, and A1, A2 are unknown constants, which should be determined
from boundary conditions (2.5), and J|1−p|/2(·), Y|1−p|/2(·) are Bessel functions. Equations (2.19)
and (2.17) with condition (2.16) lead to the following solution

W3(x2) = A3 exp(βx2) x2 < 0 β2 =
k2µ̃

C

(
1− c2

c̃2

)
c̃2 =

µ̃

ρ̃
(2.23)

on the assumption that c < c̃ and A3 is an unknown constant. The constant A1, A2, A3 should
be calculated from boundary conditions (2.14) and (2.15).
The further analysis needs to take into consideration two cases: p ¬ 1 and p > 1.

Case 1

Consider that

p ¬ 1 so |1− p| = 1− p (2.24)

To determine the stress component σ23, the following differential relations for the Bessel functions
should be applied (Lebiediev, 1957)

dzνJν(z)

dz
= zνJν−1(z)

dzνYν(z)

dz
= zνYν−1(z) (2.25)



1130 S. Kowalczyk et al.

Bearing in mind equations (2.2), (2.17), (2.21) and (2.24), it follows that the stress component σ23
is expressed in the form

σ23(x1, x2, t) = qµ0(1 + αx2)
1+p

2

[
A1J−1−p

2

(
q
( 1
α
+ x2
))
+A2Y−1−p

2

(
q
( 1
α
+ x2
))]
eik(x1−ct)

(2.26)

where 0 < x2 < H.

From boundary condition (2.14) and conditions of continuity (2.15) as well as equations
(2.26), (2.17), (2.23), (2.12), (2.21), the following algebraic equations for the unknowns A1, A2,
A3 are obtained

A1J−1−p
2

(
q
( 1
α
+H
))
+A2Y−1−p

2

(
q
( 1
α
+H
))
= 0

A1J 1−p
2

( q
α

)
+A2Y 1−p

2

( q
α

)
= A3

µ0q
[
A1J−1−p

2

( q
α

)
+A2Y−1−p

2

( q
α

)]
= CβA3

(2.27)

Eliminating A3 from the system of equations (2.27), it follows that

A1J−1−p
2

(
q
( 1
α
+H
))
+A2Y−1−p

2

(
q
( 1
α
+H
))
= 0

A1
[
µ0qJ−1−p

2

( q
α

)
− CβJ 1−p

2

( q
α

)]
+A2

[
µ0qY−1−p

2

( q
α

)
− CβY 1−p

2

( q
α

)]
= 0

(2.28)

The system of algebraic equations (2.28) has a non-zero solution under the following condition

J−1−p
2

(
q
( 1
α
+H
))[

µ0qY−1−p
2

( q
α

)
− CβY 1−p

2

( q
α

)]

− Y−1−p
2

(
q
( 1
α
+H
))[

µ0qJ−1−p
2

( q
α

)
− CβJ 1−p

2

( q
α

)]
= 0

(2.29)

Equation (2.29) will be solved numerically.

Case 2

Consider now that

p > 1 so |1− p| = p− 1 (2.30)

To determine the stress component σ23, the following differential relations for the Bessel functions
should be applied (Lebiediev, 1957)

dz−νJν(z)

dz
= −z−νJν+1(z)

dz−νYν(z)

dz
= −z−νYν+1(z) (2.31)

Bearing in mind equations (2.2), (2.17), (2.21) and (2.31), it follows that the stress component
σ23 is expressed in the form

σ23(x1, x2, t) = −qµ0(1 + αx2)
1+p

2

[
A1J 1+p

2

(
q
( 1
α
+ x2
))
+A2Y 1+p

2

(
q
( 1
α
+ x2
))]
eik(x1−ct)

(2.32)

where 0 < x2 < H.



On some problems of SH wave propagation in inhomogeneous elastic bodies 1131

From boundary conditions (2.14) and (2.15) and equations (2.32), (2.17), (2.23), (2.12),
(2.21), the following linear algebraic equations for the unknowns A1, A2, A3 are obtained

A1Jp+1
2

( q
α
(1 + αH)

)
+A2Y p+1

2

( q
α
(1 + αH)

)
= 0

A1Jp+1
2

( q
α

)
+A2Y p+1

2

( q
α

)
= A3

− µ0q
[
A1J 1+p

2

( q
α

)
+A2Y 1+p

2

( q
α

)]
= CβA3

(2.33)

Eliminating A3 from the system of equations (2.33), it follows that

A1Jp+1
2

( q
α
(1 + αH)

)
+A2Y p+1

2

( q
α
(1 + αH)

)
= 0

A1
[
µ0qJp+1

2

( q
α

)
+ CβJp−1

2

( q
α

)]
+A2

[
µ0qY p+1

2

( q
α

)
+ CβY p−1

2

( q
α

)]
= 0

(2.34)

The system of algebraic equations (2.34) has non-zero solutions under the following condition

Jp+1
2

( q
α
(1 + αH)

)[
µ0qY p+1

2

( q
α

)
+ CβY p−1

2

( q
α

)]

− Y p+1
2

( q
α
(1 + αH)

)[
µ0qJp+1

2

( q
α

)
+ CβJp−1

2

( q
α

)]
= 0

(2.35)

Equation (2.35) will be solved numerically.

3. Numerical results

Equations (2.29) and (2.35) will be solved numerically applying the bisection method. For this
aim, the following notations are introduced

ψ =
c2

c20
Ĉ =

Cβ

µ0
(3.1)

Case 1

For p ¬ 1 from (2.28) and (3.1), it follows that

J−1−p
2

( k
α

√
ψ − 1(1 + αH)

)[
k
√
ψ − 1Y−1−p

2

( k
α

√
ψ − 1

)
− ĈY 1−p

2

( k
α

√
ψ − 1

)]

− Y−1−p
2

( k
α

√
ψ − 1(1 + αH)

)[
k
√
ψ − 1J−1−p

2

( k
α

√
ψ − 1

)
− ĈJ 1−p

2

( k
α

√
ψ − 1

)]
= 0

(3.2)

Case 2

For p > 1 from (3.1) and (2.35), it follows that

Jp+1
2

( k
α

√
ψ − 1(1 + αH)

)[
k
√
ψ − 1Y p+1

2

(k
α

√
ψ − 1

)
+ ĈY p−1

2

( k
α

√
ψ − 1

)]

− Y p+1
2

( k
α

√
ψ − 1(1 + αH)

)[
k
√
ψ − 1Jp+1

2

( k
α

√
ψ − 1

)
+ ĈJp−1

2

( k
α

√
ψ − 1

)]
= 0

(3.3)

The obtained numerical results for the dimensionless ratio ψ = c2/c20 are presented in the form
of figures. Figure 2a presents the ratio ψ as a function of the parameter p for three cases of
kH = 1, 2, 4, parameters η = 0.5, α = 0.05 and ratios µ1/µ2 = 4, µ1/µ0 = 2, ρ1/ρ0 = 2. For
α = 0.05 and a small values of H being the thickness of the FGM layer it follows form equation



1132 S. Kowalczyk et al.

Fig. 2. The distribution of the parameter ψ = c2/c2
0
as a function of the parameter p for kH = 1, 2, 4,

η = 0.5, µ1/µ2 = 4, µ1/µ0 = 2, ρ1/ρ2 = 2, ρ1/ρ0 = 2; (a) α = 0.05, (b) α = 0.5

(2.1) that the coating layer is almost homogeneous for all values of p. For this reason, the values
of the ratio ψ are almost constant. A different case is presented in Fig. 2b, where the same
values of the parameters as in Fig. 2a are taken into account without the parameter α = 0.5. A
weak influence of the nonhomogeneity of the coating layer on the wave speed ψ = c2/c20 can be
noticed.
Figure 3a presents the distributions of ψ as functions of kH for η = 0.5, µ1/µ0 = 2, ρ1/ρ0 = 2,

α = 0.05, p = 0.5 and three cases of values of the ratios: 1 – µ1/µ2 = 4, 2 – µ1/µ2 = 6,
3 – µ1/µ2 = 8. This figure shows that the influence of different features of the sub-layers being
components of the considered foundation on the wave speed ψ = c2/c20 is rather small.
The distributions of ψ as a function of the ratio µ1/µ2 = ρ1/ρ2 for four cases of values

p = 0, 0.5, 1, 2 and η = 0.5, µ1/µ0 = 2, ρ1/ρ0 = 2, α = 0.05, kH = 1 are presented in Fig. 3b.
The curve numbered by 1 (Fig. 3b) shows the dependence of the ratio ψ for p = 0, so it is
the homogenous coating layer and the periodically layered foundation. It can be observed that
values of ψ decrease together with an increase in the parameter p.

Fig. 3. The distributions of ψ = c2/c2
0
: (a) as a function of kH for 1: µ1/µ2 = 4, 2: µ1/µ2 = 6,

3: µ1/µ2 = 8; (b) as a function of µ1/µ2

Figure 4a shows the distributions of the ratio ψ as a function of µ1/µ0 for four cases of the
ratio µ1/µ2 = 4, 6, 8, 10 and η = 0.5, α = 0.05, ρ1/ρ0 = ρ1/rho2 = 2, p = 0.5, kH = 1. The
curve numbered by 1 presents the smallest values of ψ for all the considered nonhomogenities
of the periodically layered foundation.
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The distributions of the ratio ψ as a function of the parameter η for α = 0.05,
µ1/µ0 = ρ1/ρ0 = ρ1/ρ2 = 2, p = 0.5, kH = 1 and for cases of the ratio µ1/µ2 = 4, 6, 8, 10 are
given in Fig. 4b. It can be observed that for η → 1 all curves numbered by 1, 2, 3 and 4 tend to
the same point.

Fig. 4. The distributions of ψ = c2/c2
0
: (a) as a function of µ1/µ0, (b) as a function of η

The limit case η → 1 leads to the homogeneous foundation with the shear modulus µ1 = 2µ0,
coated by the FGM layer with the shear modulus and the mass density dependent in the form
given by (2.1) with respect to the distance from its lower boundary plane. In the case η → 0,
the half-space being the foundation with the shear modulus µ2 is obtained. The values of µ2
depend on the taken into account value of the ratio µ1/µ2. From the assumptions in Fig. 4b, it
follows that the curves are adequate for the cases: curve 1 for µ0 = 2µ2, curve 2 for µ0 = 3µ2,
curve 3 for µ0 = 4µ2 and curve 4 for µ0 = 5µ2, respectively. From Fig. 4b it can seen that the
values of ψ decrease with an increase in the ratio µ1/µ2 for fixed values of the parameter η.

4. Final remarks

The problem of SH wave propagation in an elastic nonhomogeneous half-space is considered. The
body is assumed to be composed of the FGM layer being a coating and periodically stratified
two-layer half-space. The investigations are limited to the anti-plane shear harmonic waves in
the nonhomoeneous body on the assumption that the boundary surface is free of loadings.
The main aim is to determine the wave speed by using the wave number and the mechanical
properties of the components of the half-space. The numerical results present the wave speed in
the dimensionless form. The obtained figures show the influence of the nonhomogeneity of the
coating layer as well as the nonhomogenity of the foundation on the wave speed. The assumptions
of p = 0, µ1 = µ2 = µ0, ρ1 = ρ2 = ρ0 lead to Love’s wave propagation in the homogenous half-
space coated by the homogeneous layer well-known in the literature (see for example Achenbach,
1973; Nowacki, 1970), which is shown in Appendix.

A. Appendix

Taking into account

p = 0 µ1 = µ2 ρ1 = ρ2 (A.1)
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and using equation (2.22), (2,23), (2.9) and (2.13), it follows that

C = µ1 q = k

√
c2

c20
− 1 β = k

√

1− c2

c21
c21 =

µ1
ρ1

c0 < c < c1

(A.2)

Substituting (A.1) and (A.2) into (2.29) and using following relations (Lebiediev, 1957)

J 1
2

(z) =

√
2

πz
sin z J− 1

2

(z) =

√
2

πz
cos z

Y 1
2

(z) = −J− 1
2

(z) Y− 1
2

(z) = J 1
2

(z)
(A.3)

we obtain

µ0q
[
sin

q

α
cos
(
q
( 1
α
+H
))
− cos q

α
sin
(
q
( 1
α
+H
))]

+ µ1β
[
cos

q

α
cos
(
q
( 1
α
+H
))
+ sin

q

α
sin
(
q
( 1
α
+H
))]
= 0

(A.4)

From equation (A.4), it follows that

µ1β = µ0q tan(qH) (A.5)

Equation (A.5) agrees with the characteristic equation for the case of Love’s wave presented in
the monograph by Nowacki (1970) (p. 612, eq. (13)).
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